

SURVEY INFORMATION
PREPARED BY: JEWITT AND DIXON LTD.
COORDINATE SYSTEM: NAD83
COMPILATION DATE: NOVEMBER 8, 2021

GENERAL NOTES:

1) ALL DISTANCES & ELEVATIONS ARE SHOWN IN METRES AND DECIMALS THERE OF.
2) ELEVATIONS ARE GEODETIC AND DERIVED FROM SITE B.M.#1 ELEV= 232.53 (TOP
OF HIGHER NAIL IN HYDRO POLE), B.M.#2 ELEV= 231.13 (TOP OF FOUNDATION YOGA
BUILDING), AND B.M.#3 ELEV= 232.71 (TOP OF FOUNDATION ROGERS BUILDING)

SITE DETAILS 3

SKYDEV QUEENSWAY SIMCO

LIMITED PARNERSHIP

157 QUEENSWAY
SIMCOE, ONTARIO

METRIC SCALE

REVISION

DATE DESCRIPTION

1. 03/05/24 ISSUED FOR REVIEW

NORTH ARROW

SD-3

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

03/04/2024

Province:	Ontario
City:	Simcoe
Nearest Rainfall Station:	BRANTFORD MOE
Climate Station Id:	6140954
Years of Rainfall Data:	41

Site Name: OGS-DriveAisle

Drainage Area (ha): 0.20
Runoff Coefficient 'c': 0.90

Particle Size Distribution: CA ETV

Target TSS Removal (%): 50.0

90.00
6.55
Yes
No
696.00
100
80
65

Project Name:	21661
Project Number:	OGS-DriveAisle
Designer Name:	Pavneet Brar
Designer Company:	KWA Site Dev
Designer Email:	pavneet.brar@kwasitedev.com
Designer Phone:	289-259-3545
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

Net Annua	l Sediment
(TSS) Load	Reduction
Sizing S	ummary
<u>.</u>	TCC D

Stormceptor Model	TSS Removal Provided (%)
EFO4	63
EFO6	67
EFO8	69
EFO10	70
EFO12	70

Recommended Stormceptor EFO Model:

EFO4

Estimated Net Annual Sediment (TSS) Load Reduction (%):

63

Water Quality Runoff Volume Capture (%):

> 90

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

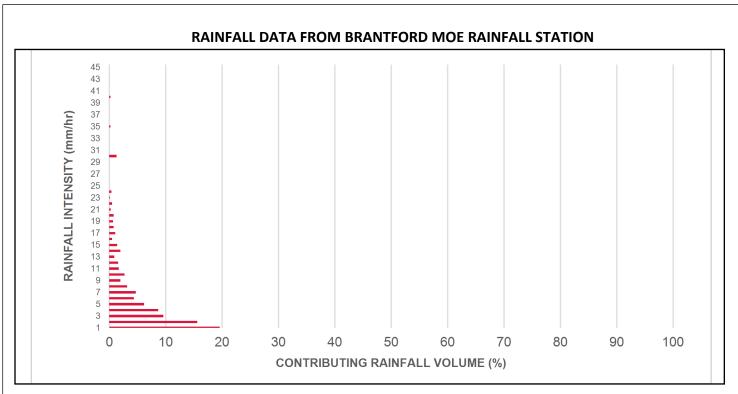
PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

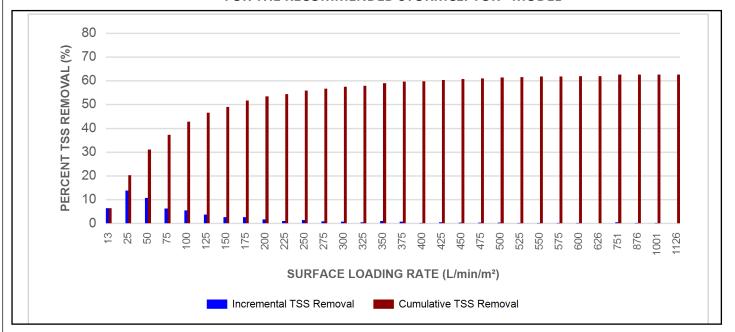
PARTICLE SIZE DISTRIBUTION (PSD)

▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	rercent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	9.1	9.1	0.25	15.0	13.0	70	6.4	6.4
1.00	19.6	28.8	0.50	30.0	25.0	70	13.8	20.3
2.00	15.6	44.4	1.00	60.0	50.0	69	10.7	31.0
3.00	9.6	54.0	1.50	90.0	75.0	66	6.3	37.3
4.00	8.7	62.7	2.00	120.0	100.0	62	5.4	42.7
5.00	6.2	68.9	2.50	150.0	125.0	61	3.7	46.5
6.00	4.4	73.3	3.00	180.0	150.0	58	2.6	49.0
7.00	4.7	77.9	3.50	210.0	175.0	57	2.6	51.7
8.00	3.2	81.1	4.00	240.0	200.0	54	1.7	53.4
9.00	2.0	83.1	4.50	270.0	225.0	53	1.0	54.4
10.00	2.7	85.7	5.00	300.0	250.0	53	1.4	55.8
11.00	1.7	87.4	5.50	330.0	275.0	52	0.9	56.7
12.00	1.6	89.0	6.00	360.0	300.0	51	0.8	57.5
13.00	0.9	89.8	6.51	390.0	325.0	50	0.4	57.9
14.00	2.0	91.8	7.01	420.0	350.0	50	1.0	58.9
15.00	1.4	93.2	7.51	450.0	375.0	49	0.7	59.6
16.00	0.5	93.7	8.01	480.0	400.0	48	0.2	59.8
17.00	1.1	94.8	8.51	510.0	425.0	47	0.5	60.3
18.00	0.8	95.5	9.01	540.0	450.0	47	0.4	60.7
19.00	0.7	96.2	9.51	570.0	475.0	46	0.3	61.0
20.00	0.8	97.0	10.01	600.0	500.0	45	0.4	61.4
21.00	0.3	97.4	10.51	631.0	525.0	44	0.1	61.5
22.00	0.5	97.8	11.01	661.0	550.0	44	0.2	61.7
23.00	0.1	97.9	11.51	691.0	575.0	43	0.1	61.8
24.00	0.4	98.3	12.01	721.0	600.0	42	0.2	61.9
25.00	0.0	98.3	12.51	751.0	626.0	42	0.0	61.9
30.00	1.3	99.6	15.01	901.0	751.0	41	0.5	62.5
35.00	0.2	99.8	17.51	1051.0	876.0	41	0.1	62.5
40.00	0.2	100.0	20.02	1201.0	1001.0	40	0.1	62.6
45.00	0.0	100.0	22.52	1351.0	1126.0	38	0.0	62.6
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	63 %

Climate Station ID: 6140954 Years of Rainfall Data: 41

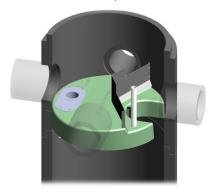


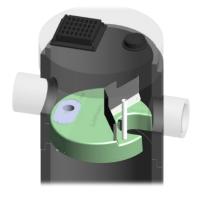
INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model D	iameter	Min Angle Inlet / Outlet Pipes	Max Inle	•	Max Outl	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION


► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Mod Diam	_	Depth Pipe In Sump	vert to	Oil Vo	lume	Sedi	mended ment ice Depth *	Maxii Sediment '	-	Maxim Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Feature Benefit Feature Appeals To Patent-pending enhanced flow treatment Superior, verified third-party Regulator, Specifying & Design Engineer and scour prevention technology performance Third-party verified light liquid capture Proven performance for fuel/oil hotspot Regulator, Specifying & Design Engineer, and retention for EFO version locations Site Owner Functions as bend, junction or inlet Design flexibility Specifying & Design Engineer structure Minimal drop between inlet and outlet Site installation ease Contractor Large diameter outlet riser for inspection Easy maintenance access from grade Maintenance Contractor & Site Owner and maintenance

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

			Stormcep	tor [®] EFO				
SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	
1	70	660	42	1320	35	1980	24	
30	70	690	42	1350	35	2010	24	
60	67	720	41	1380	34	2040	23	
90	63	750	41	1410	34	2070	23	
120	61	780	41	1440	33	2100	23	
150	58	810	41	1470	32	2130	22	
180	56	840	41	1500	32	2160	22	
210	54	870	41	1530	31	2190	22	
240	53	900	41	1560	31	2220	21	
270	52	930	40	1590	30	2250	21	
300	51	960	40	1620	29	2280	21	
330	50	990	40	1650	29	2310	21	
360	49	1020	40	1680	28	2340	20	
390	48	1050	39	1710	28	2370	20	
420	47	1080	39	1740	27	2400	20	
450	47	1110	38	1770	27	2430	20	
480	46	1140	38	1800	26	2460	19	
510	45	1170	37	1830	26	2490	19	
540	44	1200	37	1860	26	2520	19	
570	43	1230	37	1890	25	2550	19	
600	42	1260	36	1920	25	2580	18	
630	42	1290	36	1950	24	2600	26	

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 - PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 <u>LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING</u>

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates. For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

03/04/2024

Province:	Ontario
City:	Simcoe
Nearest Rainfall Station:	BRANTFORD MOE
Climate Station Id:	6140954
Years of Rainfall Data:	41

Site Name: OGS-Inf 1

Drainage Area (ha): 1.63
Runoff Coefficient 'c': 0.90

Particle Size Distribution: CA ETV

Target TSS Removal (%): 50.0

Required Water Quality Runoff Volume Capture (%):	90.00
Estimated Water Quality Flow Rate (L/s):	53.37
Oil / Fuel Spill Risk Site?	Yes
Upstream Flow Control?	No
Peak Conveyance (maximum) Flow Rate (L/s):	399.00
Peak Conveyance (maximum) Flow Rate (L/s): Influent TSS Concentration (mg/L):	399.00 100
, , , , , , , , , , , , , , , , , , , ,	

Project Name:	21661
Project Number:	OGS-DriveAisle
Designer Name:	Pavneet Brar
Designer Company:	KWA Site Dev
Designer Email:	pavneet.brar@kwasitedev.com
Designer Phone:	289-259-3545
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

(TSS) Load	l Sediment Reduction ummary
Stormceptor	TSS Removal
Model	Provided (%

Stormceptor Model	TSS Removal Provided (%)
EFO4	41
EFO6	51
EFO8	57
EFO10	61
EFO12	63

Recommended Stormceptor EFO Model:

EFO6

Estimated Net Annual Sediment (TSS) Load Reduction (%):

51

Water Quality Runoff Volume Capture (%):

> 90

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

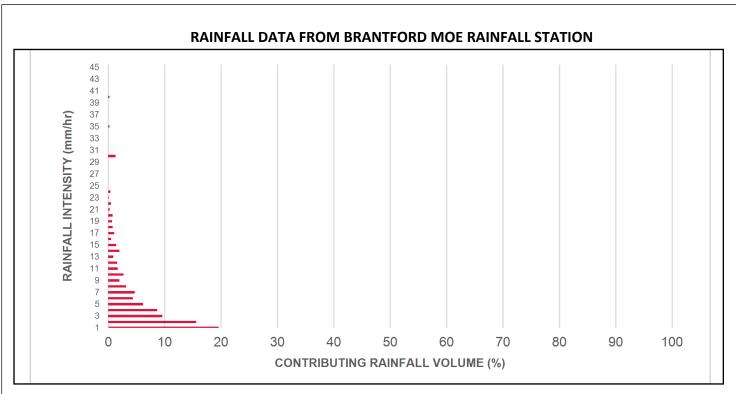
PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

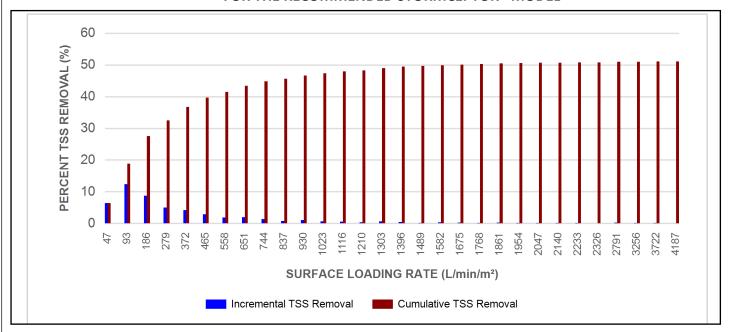
PARTICLE SIZE DISTRIBUTION (PSD)

▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	rercent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	9.1	9.1	2.04	122.0	47.0	70	6.4	6.4
1.00	19.6	28.8	4.08	245.0	93.0	63	12.4	18.8
2.00	15.6	44.4	8.16	489.0	186.0	56	8.7	27.5
3.00	9.6	54.0	12.23	734.0	279.0	52	5.0	32.5
4.00	8.7	62.7	16.31	979.0	372.0	49	4.2	36.7
5.00	6.2	68.9	20.39	1223.0	465.0	46	2.8	39.6
6.00	4.4	73.3	24.47	1468.0	558.0	44	1.9	41.5
7.00	4.7	77.9	28.55	1713.0	651.0	42	1.9	43.4
8.00	3.2	81.1	32.63	1958.0	744.0	41	1.3	44.8
9.00	2.0	83.1	36.70	2202.0	837.0	41	0.8	45.6
10.00	2.7	85.7	40.78	2447.0	930.0	40	1.1	46.6
11.00	1.7	87.4	44.86	2692.0	1023.0	40	0.7	47.3
12.00	1.6	89.0	48.94	2936.0	1116.0	38	0.6	47.9
13.00	0.9	89.8	53.02	3181.0	1210.0	37	0.3	48.2
14.00	2.0	91.8	57.10	3426.0	1303.0	36	0.7	48.9
15.00	1.4	93.2	61.17	3670.0	1396.0	34	0.5	49.4
16.00	0.5	93.7	65.25	3915.0	1489.0	32	0.2	49.6
17.00	1.1	94.8	69.33	4160.0	1582.0	30	0.3	49.9
18.00	0.8	95.5	73.41	4405.0	1675.0	29	0.2	50.1
19.00	0.7	96.2	77.49	4649.0	1768.0	27	0.2	50.3
20.00	0.8	97.0	81.57	4894.0	1861.0	26	0.2	50.5
21.00	0.3	97.4	85.64	5139.0	1954.0	24	0.1	50.6
22.00	0.5	97.8	89.72	5383.0	2047.0	23	0.1	50.7
23.00	0.1	97.9	93.80	5628.0	2140.0	22	0.0	50.7
24.00	0.4	98.3	97.88	5873.0	2233.0	21	0.1	50.8
25.00	0.0	98.3	101.96	6117.0	2326.0	21	0.0	50.8
30.00	1.3	99.6	122.35	7341.0	2791.0	18	0.2	51.0
35.00	0.2	99.8	142.74	8564.0	3256.0	15	0.0	51.0
40.00	0.2	100.0	163.13	9788.0	3722.0	13	0.0	51.1
45.00	0.0	100.0	183.52	11011.0	4187.0	12	0.0	51.1
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	51 %

Climate Station ID: 6140954 Years of Rainfall Data: 41



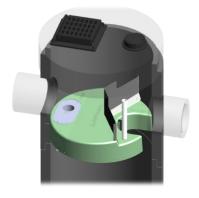
INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle	•	Max Outl	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)				
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15				
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35				
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60				
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100				
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100				

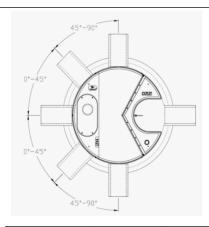
SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION


► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Mod Diam	_	Depth Pipe In Sump	vert to	Oil Vo	lume	Sedi	mended ment ice Depth *	Maxii Sediment '	-	Maxim Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Feature Benefit Feature Appeals To Patent-pending enhanced flow treatment Superior, verified third-party Regulator, Specifying & Design Engineer and scour prevention technology performance Third-party verified light liquid capture Proven performance for fuel/oil hotspot Regulator, Specifying & Design Engineer, and retention for EFO version locations Site Owner Functions as bend, junction or inlet Design flexibility Specifying & Design Engineer structure Minimal drop between inlet and outlet Site installation ease Contractor Large diameter outlet riser for inspection Easy maintenance access from grade Maintenance Contractor & Site Owner and maintenance

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

			Stormcep	tor® EFO			
SLR (L/min/m²)	TSS % REMOVAL						
1	70	660	42	1320	35	1980	24
30	70	690	42	1350	35	2010	24
60	67	720	41	1380	34	2040	23
90	63	750	41	1410	34	2070	23
120	61	780	41	1440	33	2100	23
150	58	810	41	1470	32	2130	22
180	56	840	41	1500	32	2160	22
210	54	870	41	1530	31	2190	22
240	53	900	41	1560	31	2220	21
270	52	930	40	1590	30	2250	21
300	51	960	40	1620	29	2280	21
330	50	990	40	1650	29	2310	21
360	49	1020	40	1680	28	2340	20
390	48	1050	39	1710	28	2370	20
420	47	1080	39	1740	27	2400	20
450	47	1110	38	1770	27	2430	20
480	46	1140	38	1800	26	2460	19
510	45	1170	37	1830	26	2490	19
540	44	1200	37	1860	26	2520	19
570	43	1230	37	1890	25	2550	19
600	42	1260	36	1920	25	2580	18
630	42	1290	36	1950	24	2600	26

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 - PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 <u>LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING</u>

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates. For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

03/04/2024

Province:	Ontario
City:	Simcoe
Nearest Rainfall Station:	BRANTFORD MOE
Climate Station Id:	6140954
Years of Rainfall Data:	41

Site Name: OGS-Inf 2

Drainage Area (ha): 1.36
Runoff Coefficient 'c': 0.90

Particle Size Distribution: CA ETV

Target TSS Removal (%): 50.0

Required Water Quality Runoff Volume Capture (%):	90.00
Estimated Water Quality Flow Rate (L/s):	44.53
Oil / Fuel Spill Risk Site?	Yes
Upstream Flow Control?	No
Peak Conveyance (maximum) Flow Rate (L/s):	726.00
Peak Conveyance (maximum) Flow Rate (L/s): Influent TSS Concentration (mg/L):	726.00 100
, , , , , , , , , , , , , , , , , , , ,	. = 0.00

Project Name:	21661
Project Number:	OGS-DriveAisle
Designer Name:	Pavneet Brar
Designer Company:	KWA Site Dev
Designer Email:	pavneet.brar@kwasitedev.com
Designer Phone:	289-259-3545
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

Stormceptor Model	TSS Removal Provided (%)
EFO4	44
EFO6	53
EFO8	59
EFO10	62
EFO12	65

Recommended Stormceptor EFO Model:

EFO6

Estimated Net Annual Sediment (TSS) Load Reduction (%):

53

Water Quality Runoff Volume Capture (%):

> 90

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

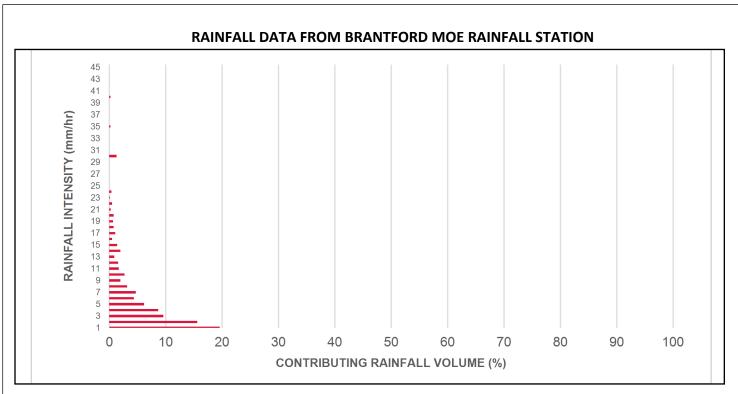
PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

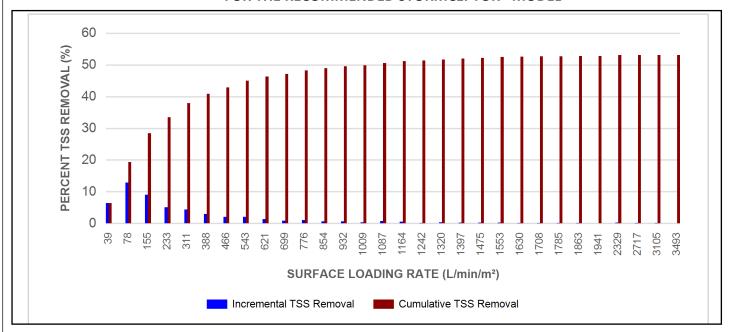
PARTICLE SIZE DISTRIBUTION (PSD)

▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent	
Size (µm)	Than	Fraction (µm)	rercent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)		
0.50	9.1	9.1	1.70	102.0	39.0	70	6.4	6.4		
1.00	19.6	28.8	3.40	204.0	78.0	66	12.9	19.3		
2.00	15.6	44.4	6.81	408.0	155.0	58	9.1	28.4		
3.00	9.6	54.0	10.21	612.0	233.0	53	5.1	33.5		
4.00	8.7	62.7	13.61	817.0	311.0	51	4.4	37.9		
5.00	6.2	68.9	17.01	1021.0	388.0	49	3.0	40.9		
6.00	4.4	73.3	20.42	1225.0	466.0	46	2.0	42.9		
7.00	4.7	77.9	23.82	1429.0	543.0	44	2.0	45.0		
8.00	3.2	81.1	27.22	1633.0	621.0	42	1.3	46.3		
9.00	2.0	83.1	30.62	1837.0	699.0	42	0.8	47.1		
10.00	2.7	85.7	34.03	2042.0	776.0	41	1.1	48.2		
11.00	1.7	87.4	37.43	2246.0	854.0	41	0.7	48.9		
12.00	1.6	89.0	40.83	2450.0	932.0	40	0.6	49.5		
13.00	0.9	89.8	44.24	2654.0	1009.0	40	0.3	49.9		
14.00	2.0	91.8	47.64	2858.0	1087.0	39	0.8	50.6		
15.00	1.4	93.2	51.04	3062.0	1164.0	38	0.5	51.2		
16.00	0.5	93.7	54.44	3267.0	1242.0	36	0.2	51.4		
17.00	1.1	94.8	57.85	3471.0	1320.0	35	0.4	51.7		
18.00	0.8	95.5	61.25	3675.0	1397.0	34	0.3	52.0		
19.00	0.7	96.2	64.65	3879.0	1475.0	32	0.2	52.2		
20.00	0.8	97.0	68.05	4083.0	1553.0	31	0.3	52.5		
21.00	0.3	97.4	71.46	4287.0	1630.0	29	0.1	52.6		
22.00	0.5	97.8	74.86	4492.0	1708.0	28	0.1	52.7		
23.00	0.1	97.9	78.26	4696.0	1785.0	27	0.0	52.7		
24.00	0.4	98.3	81.67	4900.0	1863.0	26	0.1	52.8		
25.00	0.0	98.3	85.07	5104.0	1941.0	25	0.0	52.8		
30.00	1.3	99.6	102.08	6125.0	2329.0	21	0.3	53.1		
35.00	0.2	99.8	119.10	7146.0	2717.0	18	0.0	53.1		
40.00	0.2	100.0	136.11	8167.0	3105.0	15	0.0	53.1		
45.00	0.0	100.0	153.12	9187.0	3493.0	14	0.0	53.1		
	Estimated Net Annual Sediment (TSS) Load Reduction = 53 %									

Climate Station ID: 6140954 Years of Rainfall Data: 41

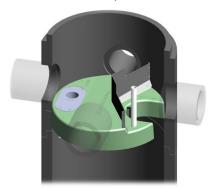


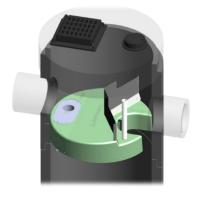
INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle	•	Max Outl	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100		

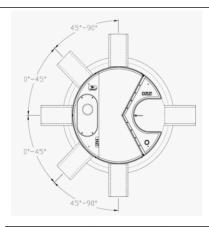
SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION


► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Mod Diam	_	Depth Pipe In Sump	vert to	Oil Vo	lume	Sedi	mended ment ice Depth *	Maxii Sediment '	-	Maxim Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Feature Benefit Feature Appeals To Patent-pending enhanced flow treatment Superior, verified third-party Regulator, Specifying & Design Engineer and scour prevention technology performance Third-party verified light liquid capture Proven performance for fuel/oil hotspot Regulator, Specifying & Design Engineer, and retention for EFO version locations Site Owner Functions as bend, junction or inlet Design flexibility Specifying & Design Engineer structure Minimal drop between inlet and outlet Site installation ease Contractor Large diameter outlet riser for inspection Easy maintenance access from grade Maintenance Contractor & Site Owner and maintenance

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

	Stormceptor® EFO						
SLR (L/min/m²)	TSS % REMOVAL						
1	70	660	42	1320	35	1980	24
30	70	690	42	1350	35	2010	24
60	67	720	41	1380	34	2040	23
90	63	750	41	1410	34	2070	23
120	61	780	41	1440	33	2100	23
150	58	810	41	1470	32	2130	22
180	56	840	41	1500	32	2160	22
210	54	870	41	1530	31	2190	22
240	53	900	41	1560	31	2220	21
270	52	930	40	1590	30	2250	21
300	51	960	40	1620	29	2280	21
330	50	990	40	1650	29	2310	21
360	49	1020	40	1680	28	2340	20
390	48	1050	39	1710	28	2370	20
420	47	1080	39	1740	27	2400	20
450	47	1110	38	1770	27	2430	20
480	46	1140	38	1800	26	2460	19
510	45	1170	37	1830	26	2490	19
540	44	1200	37	1860	26	2520	19
570	43	1230	37	1890	25	2550	19
600	42	1260	36	1920	25	2580	18
630	42	1290	36	1950	24	2600	26

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 - PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 <u>LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING</u>

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates. For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

03/04/2024

Province:	Ontario
City:	Simcoe
Nearest Rainfall Station:	BRANTFORD MOE
Climate Station Id:	6140954
Years of Rainfall Data:	41

Site Name: OGS-Pond

Drainage Area (ha): 1.34
Runoff Coefficient 'c': 0.90

Particle Size Distribution: CA ETV

Target TSS Removal (%): 50.0

90.00
43.88
Yes
No
1193.00
100
492
400

Project Name:	21661
Project Number:	OGS-DriveAisle
Designer Name:	Pavneet Brar
Designer Company:	KWA Site Dev
Designer Email:	pavneet.brar@kwasitedev.com
Designer Phone:	289-259-3545
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

(TSS) Load	Reduction ummary
Stormceptor	TSS Remova

Stormceptor Model	TSS Removal Provided (%)
EFO4	44
EFO6	53
EFO8	59
EFO10	62
EFO12	65

Recommended Stormceptor EFO Model:

EFO6

Estimated Net Annual Sediment (TSS) Load Reduction (%):

53

Water Quality Runoff Volume Capture (%):

> 90

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

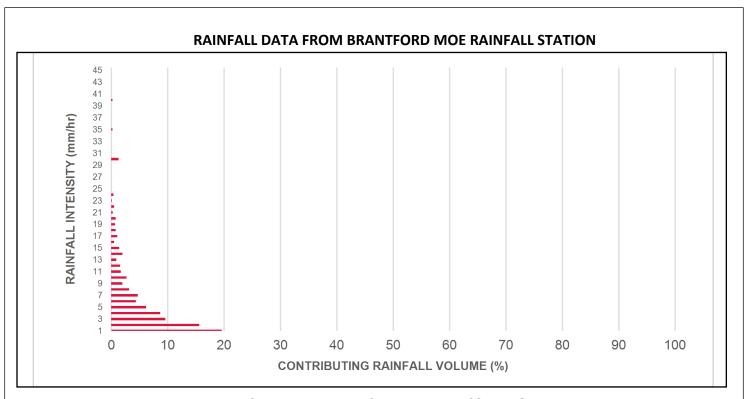
PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

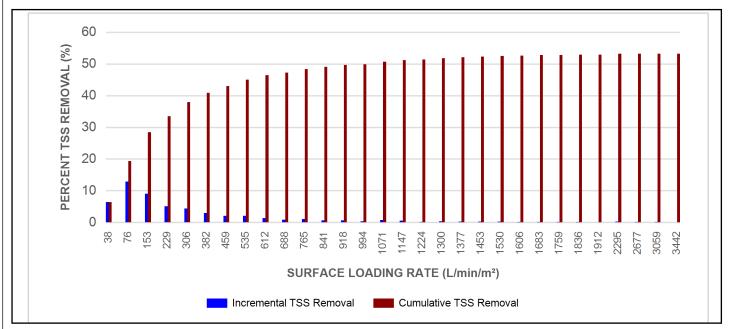
PARTICLE SIZE DISTRIBUTION (PSD)

▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent	
Size (µm)	Than	Fraction (µm)	rercent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	9.1	9.1	1.68	101.0	38.0	70	6.4	6.4
1.00	19.6	28.8	3.35	201.0	76.0	66	12.9	19.3
2.00	15.6	44.4	6.71	402.0	153.0	58	9.1	28.4
3.00	9.6	54.0	10.06	603.0	229.0	53	5.1	33.5
4.00	8.7	62.7	13.41	805.0	306.0	51	4.4	37.9
5.00	6.2	68.9	16.76	1006.0	382.0	49	3.0	40.9
6.00	4.4	73.3	20.12	1207.0	459.0	47	2.0	43.0
7.00	4.7	77.9	23.47	1408.0	535.0	44	2.1	45.0
8.00	3.2	81.1	26.82	1609.0	612.0	42	1.3	46.4
9.00	2.0	83.1	30.17	1810.0	688.0	42	0.8	47.2
10.00	2.7	85.7	33.53	2012.0	765.0	41	1.1	48.3
11.00	1.7	87.4	36.88	2213.0	841.0	41	0.7	49.0
12.00	1.6	89.0	40.23	2414.0	918.0	40	0.6	49.6
13.00	0.9	89.8	43.58	2615.0	994.0	40	0.4	49.9
14.00	2.0	91.8	46.94	2816.0	1071.0	39	0.8	50.7
15.00	1.4	93.2	50.29	3017.0	1147.0	38	0.5	51.2
16.00	0.5	93.7	53.64	3219.0	1224.0	37	0.2	51.4
17.00	1.1	94.8	57.00	3420.0	1300.0	36	0.4	51.8
18.00	0.8	95.5	60.35	3621.0	1377.0	34	0.3	52.1
19.00	0.7	96.2	63.70	3822.0	1453.0	33	0.2	52.3
20.00	0.8	97.0	67.05	4023.0	1530.0	31	0.3	52.5
21.00	0.3	97.4	70.41	4224.0	1606.0	30	0.1	52.6
22.00	0.5	97.8	73.76	4426.0	1683.0	28	0.1	52.8
23.00	0.1	97.9	77.11	4627.0	1759.0	27	0.0	52.8
24.00	0.4	98.3	80.46	4828.0	1836.0	26	0.1	52.9
25.00	0.0	98.3	83.82	5029.0	1912.0	25	0.0	52.9
30.00	1.3	99.6	100.58	6035.0	2295.0	21	0.3	53.2
35.00	0.2	99.8	117.34	7041.0	2677.0	18	0.0	53.2
40.00	0.2	100.0	134.11	8046.0	3059.0	16	0.0	53.2
45.00	0.0	100.0	150.87	9052.0	3442.0	14	0.0	53.2
Estimated Net Annual Sediment (TSS) Load Reduction =								

Climate Station ID: 6140954 Years of Rainfall Data: 41

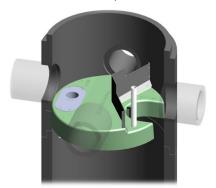


INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outlet Pipe Diameter		Peak Conveyance Flow Rate	
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100

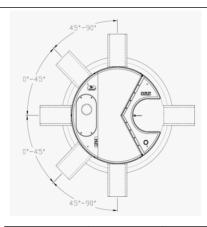
SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION


► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Model Diameter		Pipe In	Depth (Outlet Pipe Invert to Sump Floor)		lume	Recommended Sediment Maintenance Depth *		Maxii Sediment '	-	Maxim Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To		
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer		
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner		
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

	Stormceptor® EFO											
	SLR (L/min/m²)	TSS % REMOVAL										
	1	70	660	42	1320	35	1980	24				
	30	70	690	42	1350	35	2010	24				
	60	67	720	41	1380	34	2040	23				
	90	63	750	41	1410	34	2070	23				
	120	61	780	41	1440	33	2100	23				
	150	58	810	41	1470	32	2130	22				
	180	56	840	41	1500	32	2160	22				
	210	54	870	41	1530	31	2190	22				
	240	53	900	41	1560	31	2220	21				
	270	52	930	40	1590	30	2250	21				
	300	51	960	40	1620	29	2280	21				
	330	50	990	40	1650	29	2310	21				
	360	49	1020	40	1680	28	2340	20				
	390	48	1050	39	1710	28	2370	20				
	420	47	1080	39	1740	27	2400	20				
	450	47	1110	38	1770	27	2430	20				
	480	46	1140	38	1800	26	2460	19				
	510	45	1170	37	1830	26	2490	19				
	540	44	1200	37	1860	26	2520	19				
	570	43	1230	37	1890	25	2550	19				
	600	42	1260	36	1920	25	2580	18				
	630	42	1290	36	1950	24	2600	26				
1												

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 <u>LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING</u>

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates. For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Page 10

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

03/04/2024

Province:	Ontario
City:	Simcoe
Nearest Rainfall Station:	BRANTFORD MOE
Climate Station Id:	6140954
Years of Rainfall Data:	41

Site Name: OGS-west

Drainage Area (ha): 0.24
Runoff Coefficient 'c': 0.90

Particle Size Distribution: CA ETV

Target TSS Removal (%): 50.0

90.00
7.86
Yes
No
54.00
100
93
33

Project Name:	21661
Project Number:	OGS-DriveAisle
Designer Name:	Pavneet Brar
Designer Company:	KWA Site Dev
Designer Email:	pavneet.brar@kwasitedev.com
Designer Phone:	289-259-3545
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

(TSS) Load Reduction Sizing Summary									
Stormceptor Model	TSS Removal Provided (%)								
FFO.4	C1								

Net Annual Sediment

Model Provided (%)

EFO4 61

EFO6 66

EFO8 69

EFO10 70

EFO12 70

Recommended Stormceptor EFO Model: EFO4

Estimated Net Annual Sediment (TSS) Load Reduction (%):

Water Quality Runoff Volume Capture (%):

> 90

61

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

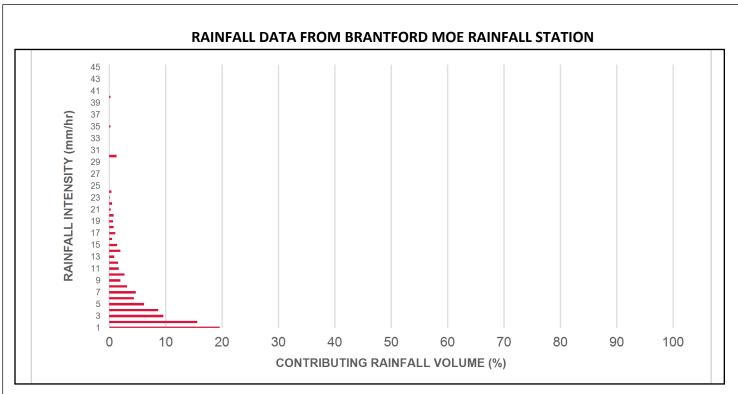
PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

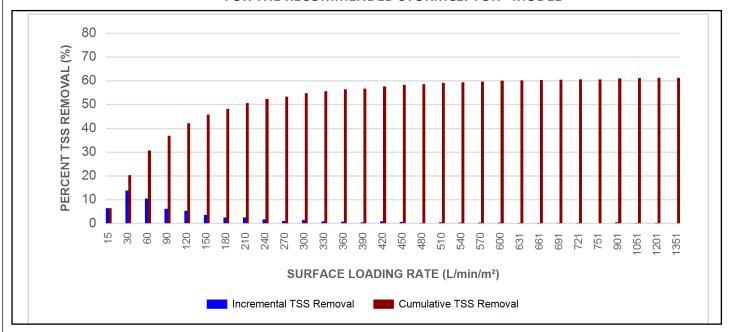
PARTICLE SIZE DISTRIBUTION (PSD)

► The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Davaant	
Size (µm)	Than	Fraction (µm)	Percent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	9.1	9.1	0.30	18.0	15.0	70	6.4	6.4
1.00	19.6	28.8	0.60	36.0	30.0	70	13.8	20.3
2.00	15.6	44.4	1.20	72.0	60.0	67	10.5	30.7
3.00	9.6	54.0	1.80	108.0	90.0	63	6.1	36.8
4.00	8.7	62.7	2.40	144.0	120.0	61	5.3	42.1
5.00	6.2	68.9	3.00	180.0	150.0	58	3.6	45.7
6.00	4.4	73.3	3.60	216.0	180.0	56	2.5	48.1
7.00	4.7	77.9	4.20	252.0	210.0	54	2.5	50.6
8.00	3.2	81.1	4.80	288.0	240.0	53	1.7	52.3
9.00	2.0	83.1	5.40	324.0	270.0	52	1.0	53.3
10.00	2.7	85.7	6.00	360.0	300.0	51	1.4	54.7
11.00	1.7	87.4	6.61	396.0	330.0	50	0.8	55.5
12.00	1.6	89.0	7.21	432.0	360.0	49	0.8	56.3
13.00	0.9	89.8	7.81	468.0	390.0	48	0.4	56.7
14.00	2.0	91.8	8.41	504.0	420.0	47	0.9	57.6
15.00	1.4	93.2	9.01	540.0	450.0	47	0.7	58.3
16.00	0.5	93.7	9.61	576.0	480.0	46	0.2	58.5
17.00	1.1	94.8	10.21	612.0	510.0	45	0.5	59.0
18.00	0.8	95.5	10.81	649.0	540.0	44	0.3	59.3
19.00	0.7	96.2	11.41	685.0	570.0	43	0.3	59.6
20.00	0.8	97.0	12.01	721.0	600.0	42	0.3	60.0
21.00	0.3	97.4	12.61	757.0	631.0	42	0.1	60.1
22.00	0.5	97.8	13.21	793.0	661.0	42	0.2	60.3
23.00	0.1	97.9	13.81	829.0	691.0	42	0.0	60.4
24.00	0.4	98.3	14.41	865.0	721.0	41	0.2	60.5
25.00	0.0	98.3	15.01	901.0	751.0	41	0.0	60.5
30.00	1.3	99.6	18.01	1081.0	901.0	41	0.5	61.0
35.00	0.2	99.8	21.02	1261.0	1051.0	39	0.1	61.1
40.00	0.2	100.0	24.02	1441.0	1201.0	37	0.1	61.2
45.00	0.0	100.0	27.02	1621.0	1351.0	35	0.0	61.2
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	61 %

Climate Station ID: 6140954 Years of Rainfall Data: 41

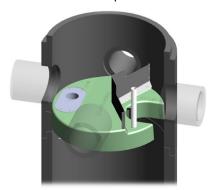


INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outl	•	Peak Conveyance Flow Rate		
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)																											
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15																											
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35																											
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60																											
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100																											
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100																											

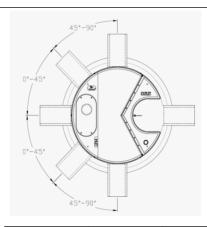
SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION


► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Model Diameter		Pipe In	Depth (Outlet Pipe Invert to Sump Floor)		lume	Recommended Sediment Maintenance Depth *		Maxii Sediment '	-	Maxim Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To		
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer		
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner		
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

Stormceptor® EFO									
SLR (L/min/m²)	TSS % REMOVAL								
1	70	660	42	1320	35	1980	24		
30	70	690	42	1350	35	2010	24		
60	67	720	41	1380	34	2040	23		
90	63	750	41	1410	34	2070	23		
120	61	780	41	1440	33	2100	23		
150	58	810	41	1470	32	2130	22		
180	56	840	41	1500	32	2160	22		
210	54	870	41	1530	31	2190	22		
240	53	900	41	1560	31	2220	21		
270	52	930	40	1590	30	2250	21		
300	51	960	40	1620	29	2280	21		
330	50	990	40	1650	29	2310	21		
360	49	1020	40	1680	28	2340	20		
390	48	1050	39	1710	28	2370	20		
420	47	1080	39	1740	27	2400	20		
450	47	1110	38	1770	27	2430	20		
480	46	1140	38	1800	26	2460	19		
510	45	1170	37	1830	26	2490	19		
540	44	1200	37	1860	26	2520	19		
570	43	1230	37	1890	25	2550	19		
600	42	1260	36	1920	25	2580	18		
630	42	1290	36	1950	24	2600	26		

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 <u>LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING</u>

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates. For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.